Research Statement

November 7, 2017

My research program is rooted in computational harmonic analysis, but spans a range of topics
from mathematical foundations of data science to cutting edge research in data driven quantum
chemistry and materials science. This program, in my view, is a microcosm for the Department of
Computational Mathematics, Science & Engineering (CMSE), and serves as a bridge between the
data science and scientific computation wings of the department. It has, thus far, been broadly
appealing to students and postdocs as well, as my group (the CEDAR Team, for ComplEx Data
Analysis Research) currently has seven members: two postdocs supported by myself, three PhD
students that I advise, one first year PhD student with no official advisor that I mentor, and another
PhD student whom I do not advise, but with whom I work extensively. Additionally, the team
is scientifically diverse, and includes one pure mathematician, two computational mathematicians,
one computational statistician, one computational physicist, one computational bio-chemist, and
an environmental economist.

Everyone in the CEDAR team, including myself, straddles the line between developing novel
mathematical theory (primarily a mix of harmonic analysis, geometry, statistics) and state-of-the-
art results in a particular scientific domain (applied computer science, biology, chemistry, materials
science, economics). Each member is encouraged to find his or her own balance, but is required to
excel in both regimes. By the time I come up for tenure, I expect that the research output of my
team will mimic or even surpass my existing distribution of works, in which I have published arti-
cles in a variety of journals ranging from pure mathematics (Linear Algebra and Its Applications,
Mathematische Annalen, Revista Matemdtica Iberoamericana, Proceedings of the American Mathe-
matical Society), applied mathematics (Applied and Computational Harmonic Analysis, Multiscale
Modeling and Simulation), electrical engineering ( Proceedings of the IEEE International Geoscience
and Remote Sensing Symposium), computer science (ICML Workshop on Computational Biology,
Neural Information Processing Systems), and papers soon to be submitted in biology (Science) and
physics (Journal of Chemical Physics).

The core of my research is in developing mathematically provable machine learning algorithms
to circumvent prohibitively expensive computations in scientific computing, thereby opening new
avenues for scientific breakthroughs. Modern scientific advances in peta and exascale computing
and high throughput technologies are enabling for the first time true scale bridging research in nu-
merous computational fields such as quantum chemistry, materials science, computational biology,
astrophysics, climate science, and fluid mechanics. These advances have led to massive amounts of
high dimensional distributed data, and interpreting and analyzing this data is a fundamental prob-
lem facing science. Machine learning is one approach to extract information from these data sets,
but new paradigms are needed that merge multiscale models with flexible learning architectures. In
the sections below, I detail my efforts along three research avenues: multilayer learning and many
body physics; geometric methods for biomedical data analysis; and the synthesis of interpolation
theory and statistical learning.



Multiscale, multilayer learning and many body physics N-body and many body simula-
tions are fundamental to numerous computational fields, including astrophysics, materials science,
and computational chemistry. However, their scope is limited by the scale of the system (sim-
ulations of large swaths of the universe), the complexity of the interactions (modeling quantum
effects), and the sheer number of systems (there are approximately 10%° small organic compounds).
In order to push the boundary of what is capable in these simulations, my work develops new
multiscale, physically based, machine learning algorithms that learn accurate physical models from
known exemplars, and efficiently evaluate these models at new states.
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The scattering transform is one of the first machine learning algorithms to be fully adapted
to the global physical properties of the potential energy: it is invariant to global isometries of the
system, and Lipschitz stable to diffeomorphisms of the relative positions of the bodies. The method
leverages an architecture similar to convolutional networks, but unlike such networks, each layer is
a predefined wavelet modulus operator over the isometry group in R3. This structure ensures the
learned model has the correct physical properties, and that the algorithm can learn an accurate
model from few examples. Each path in the network encodes complex interactions that are coupled
across a sequence of scales.

I proved (jointly with_ that pairwise potential energies of the form U(p) =
[J p(x)p(y)V (z — y) dz dy can be regressed to O(e) precision using O(|loge|?) scattering paths,
formalizing the earlier statement that scattering transforms learn physical kernels. However, in
quantum chemistry, the potential energy also includes kinetic and exchange-correlation energies;
the theoretical learning capability of scattering transforms for these energies will be investigated over
the next three years. Relatedly,h and I are pursuing a conjecture that deeper scattering paths
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encode information analogous to multipole moments. This result will facilitate local adaptability in
the algorithm, enabling use of this work in large-scale astrophysics (e.g., by improving gravitational
field evaluations).

Additionally, my group and I are pushing the envelope in materials science. Together with
MSU Prof. - we aim to simulate the voltage and lithium transport in cathode materials with
defects, which are currently beyond the capabilities of DFT. Balachandran and I will pursue work
studying Perovskite structures, including the feasibility of learning properties related to complex
defects, such as those arising from oxygen vacancies. This in turn could lead to the development
of new computer chips with memory, that are able to resume computations in the event of power
loss or intermittent power sources.

Multiscale geometric methods for biological data analysis In two separate papers ([Appl.
Comput. Harmon. Anal., 2014] and [Appl. Comput. Harmon. Anal., to appear]), I developed with

diffusion based manifold learning (ML) for dynamic data sampled from a
Riemannian manifold with a smooth family of metrics. Diffusion ML algorithms learn hierarchical
organizations of data sampled from a manifold. We proved that one can learn from a finite data set
a time inhomogeneous Markov chain that in the limit of infinite data converges to the heat kernel
of du = Ayu, thus extending seminal results on static manifolds (Belkin and Niyogi, [Neural
Comput.]; L [Appl. Comput. Harmon. Anal.)).

Continuing theoretical work will incorpo-
rate: robust estimation of high order statistics
in unstructured data, and geometric organiza-
tion of non-manifold data (e.g., data sampled
from metric spaces). Initial work in the lat-
ter direction considers how to learn metric tree °gpe siastotysts Endetbeliun
structures from high dimensional sampled data. :
Regarding the former thrust, with I am
developing algorithms to learn data driven in- i
variants, while extracting informative statistics,
through unstructured versions of the scattering
network described previously.
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single cell data. With
ﬁand others, I am using the metric tree work to provide a low dimensional visualization of
biological progressions in high-dimensional data (Figure 2), which is beyond the scope of exist-
ing nonlinear dimension reducing methods. The algorithm has been applied to a wide variety of
big biological datasets including single-cell RNA sequencing and CyTOF data, where it reveals
progression-forming variables (e.g., specific genes) and paths between developmental events in cel-
lular state-space.

Over the next three years, [ will facilitate interpretation of high dimensional, high throughput
biological data by continuing to develop tools and novel algorithms that allow biologists to extract
meaningful and predictive information from the data. My collaborators and I aim to revolutionize



the analysis of single-cell data by revealing gene-gene interactions, differentiation trajectories, gene
pathways, as well as progressions and multiscale cluster structures of cells and genes, all through a
unified geometric framework.

Smooth interpolation and statistical learning theory Many learning algorithms, funda-
mentally, interpolate a function. I proved withﬁthe existence of general Quasi Absolutely
Minimal Lipschitz Extensions (quasi-AMLEs) [Math. Ann., 2014]. The study of AMLEs has a
rich history and is linked to probability, PDEs, and computer vision. |GG
and I developed an efficient algorithm for computing optimal interpolating functions (related to
AMLES) for the space C1''(R?) [Rev. Mat. Iberoam., 2017]. Amongst Whitney type interpolation
algorithms (e.g., Fefferman and Klartag, [Ann. of Math.]), this algorithm is the first to provably
compute in O(nlogn) time (n is the number of interpolation points) the order of magnitude of
the best Whitney constant to within a dimensionless factor. An interpolant with the same norm is
computed by replacing Calderon-Zygmund decompositions with an intricate partition due to Wells
[J. Diff. Geom.], which we prove can be reduced to the computation of a convex hull (Figure 3).
Withﬁl am pushing this work into
statistical learning theory. Optimizing the empir-
ical risk over C11(R?), we obtain uniform bounds
relating the empirical risk to the true risk, and show
that the excessive risk is bounded by a given ¢ > 0
with probability 1 — 4. This result, combined with
the dimensionless factor result described previously,
yields for the first time a practical means to incor-
porate smooth function classes into supervised ma-
chine learning. To continue pushing this synthesis
of modern analysis and machine learning, I (with
Le Gruyer) have partial results on the best Whitney
constant for C1(R4,R™); 1 am also studying the
same problem for C%!(R9). Positive results along
these lines, in addition to their theoretical impact,
will yield further algorithmic developments. I also
continue to study questions related to AMLEs, such
as uniqueness and whether quasi-AMLEs can lead to

Figure 3: Computation of the optimal inter-
polant, colored by the intricate patchwork of A N1 Fs.
local interpolants.

Expansion of my research program As one

may infer from this research statement, I prefer a
broad research program that ties together multiple fields. This approach forces one to uncover
unifying principles when present, and to make novel connections otherwise. In this spirit, over
the next reporting period I will augment my existing research program by pursuing three new
directions, which leverage my existing strengths while significantly broadening its scope. These
three directions will be: (1) multiscale learning for inverse problems, PDEs, and optimal transport;
(2) mathematical foundations of geometric deep learning; and (3) multiscale geometric learning in
neuroscience. In addition to maintaining funding in the mathematics of machine learning and ma-
chine learning for many body physics (NSF DMS, DARPA), I expect to supplement the latter with
grants directed towards materials research (NSF DMR), while finding new sources of funding in the
biomedical and/or neuroscience fields (NIH) and in data driven inverse problems/PDEs (ONR).



Teaching Statement

November 7, 2017

During my tenure at MSU I have taught three courses, one at each level of instruction:
(1) CMSE 201: Introduction to Computational Science (lower undergraduate); (2) Math
414: Linear Algebra II (upper undergraduate); (3) CMSE 820: Mathematical Foundations
of Data Science (graduate qualifying course). In the spring of 2018, I will teach a topics
level graduate course (Math 994) on computational harmonic analysis, further broadening
my teaching experience. Of these courses, CMSE 201, CMSE 820, and Math 994 are all new
courses, and thus I will have developed three new courses in my first three years at MSU.
These course developments are significant endeavors, and have required an extensive amount
of time beyond the teaching of an existing course.

While each course is unique and different levels of instruction require different specific
approaches, I am a firm believer in pushing students to their limit, while coming to acknowl-
edge that at certain junctures a light touch is required in order to avoid disenfranchisement.
In Math 414, which was the first course I taught at MSU, I learned this lesson first hand.
I taught the course in the standard lecture format, and assigned fairly difficult homework
exercises so as to sharpen the students’ skills and deepen their knowledge of the subject.
Exams were in class, closed book tests, that required mastery of the rudiments of linear
algebra. The result was a rich but difficult course, which in my estimation (gleaned from
course grades and feedback), left too many students behind.

In subsequent courses I have strived to find a better balance, while incorporating more
innovative teaching methods. CMSE 201, the next course I taught at MSU, was designed
as a flipped class. The spring 2016 semester this was the first time this course was taught,
and two sections ran concurrently, one taught by myself and one by Prof.
(CMSE/Physics). While Prof. -and a teaching specialist, Dr. ||| GGG onde:-
took the majority of course development, I was free to teach the course in my own fashion.
As a flipped class, students do the majority of reading and standard lecture content before
class (via videos produced by Prof. -and _), and worked in teams of
two or four in class on various projects in scientific computing. In each class period I spent
5-10 minutes at the beginning of class reviewing the previous night’s material, which could
include particularly tricky mathematical derivations, or real time coding projected onto a
screen at the front of class. The students then settled into their groups and worked on
the proposed project for that class period, while I and the teaching assistant for the course
( went from group to group discussing the project and answering
any questions. At various junctures in each class period I paused the groups to facilitate
class wide discussion, and at the end of each class we had a final class dialogue going over




the project, trying to ascertain the key takeaways. One of the most important aspects of
this course is the students’ growth as team members, and the development of trust amongst
the students not only within the groups, but across the whole class. In a flipped course such
as CMSE 201, the course takes on a conversational tone, and thus for the course to fully
realize its potential all students must feel confident, and safe, expressing their opinions in
class. As such, in the first weeks of the course I helped lead the students in developing a type
of “bylaws” for the course, in which they agreed upon acceptable behavior while in class,
and pledged to maintain an open atmosphere.

The most recent course I taught at MSU was CMSE 820, which like CMSE 201, ran
for the first time under my direction. CMSE 820 is a qualifying exam course, and focuses
on the mathematical foundations of data science. This topic is currently of great interest,
and in the emerging era of “big data” promises to be an important component of the core
of computational science. Since the course serves as preparation for the qualifying exam,
I returned to the lecture format but maintained the conversational component. As such,
students in course volunteered numerous questions per class, poking and prodding at the
various topics. Often these discussions would carry over beyond class; I estimate that on
average | spent 30 minutes after each class conversing with a subset of the students, and
hopefully enriching the course for them. Homeworks were a mixture of mathematical exer-
cises (proofs of theory), and programming assignments illustrating the theory in practice. As
part of my duties, I wrote and graded two qualifying exams for CMSE 820 (one in May, one
in August), and organized a weekly summer study session for graduate students, in which
I supplied them with example exams that I wrote each week. Students also undertook a
course project in the later stages of the semester, linking ideas in data science to their own
research. Overall, I view the course as a success, and many students have expressed a desire
to further incorporate ideas from the course into their long term research plans.

As I continue to grow as an instructor, I will evolve my teaching style by adapting my
practices to better meet the needs of my students, while reinforcing my strengths. In order
to improve my teaching style, I plan on participating in the teaching essentials workshops
at MSU. Additionally, to achieve better balance in my courses, I will request feedback at
intermediate stages of the semester, not only at the end of the semester (this was a helpful
component in CMSE 201). To facilitate in depth feedback, I will utilize the Academic
Advancement Network (AAN) at MSU, which runs mid-semester feedback sessions. For
every course I taught, I maintained an active webpage containing papers, book references,
and typed notes which can serve as a lasting bank of knowledge for not only the students
who took the course, but others interested in the material as well (for Math 414 and CMSE
820, this amounted to over 100 pages for each course). I maintain numerous office hours and
invite students to stop by not only to discuss homework, but for general discussion regarding
any aspect of the course and even beyond.

In addition to my teaching duties, for the upcoming academic year I have been appointed
the chair of the undergraduate studies committee for CMSE. I look forward to this challenge
and leadership opportunity, especially as CMSE continues to grow its undergraduate course
offerings and develops the data science major.





