MSU Campus Mobility

Technology and Optimization Committee

- Subir Biswas (ECE)
- Kalyan Deb (ECE/BEACON)
- Tim Gates (CEE)
- Mehrnaz Ghamami (CEE)
- Nizar Lajnef (CEE)
- Graham Pierce (Univ. Outreach and Engagement)
- Xiaoming Liu (CSE)
- Sharlissa Moore (James Madison College/CEE)
- Tim Potter (MSU Bikes)

- John Prush (MSU PD Management Services)
- Hayder Radha (ECE)
- Arnold Weinfeld (Public Policy Initiatives)
- Mark Wilson (School of Planning Design and Construction)
- Ali Zockaie (CEE)
- John Verboncoeur (ECE/CMSE)

CANVAS Autonomous Vehicle Platform

MSU MOBILITY AN INTEGRATED SYSTEM of COMMUNICATION & CONTROL for AUTONOMOUS VEHICLES

AN INTEGRATED SYSTEM of and THEIR ENVIRONMENT

BENEFITS:

- Safety
- Security
- Improved fuel efficiency
- Emissions reduction

- Traffic throughput
- Event/emergency management
- Public health
- Pedestrian-vehicle arbitration

MOBILITY STUDIO paints the complete picture for managed urban transportation systems.

Campus Mobility Technologies

Technologies

- Multispectral cameras
- Pavement sensors
- Mobile ped/cyclist app synced with signals
- Parking app
- Lightweight CAV shuttles
- EV charging stations

Processes

- Mapping optimization
- Ped, cyclist, vehicle throughput optimization
- Bus routes and stops
- Emergency vehicle prioritization
- Classroom optimization
- Park once, buses and CAVs, ride-sharing
- Distributed services (e.g. food trucks)

Autonomous Bus Routes

- Park once model
- Remove personnel vehicles from central campus
- Connect major work centers to parking centers
- Provide additional services onboard, e.g. autonomous coffee vending
- Mid-day campus mobility supported by hailable lightweight vehicles

CANVAS Students' Club: Autonomous Golf Cart

- Attracted ~ 50 undergraduate students
- Breakdown by class
 - **Senior** 52%
 - Junior27%
 - Soph. 12%
- Breakdown by major
 - **Elect. & Comp. Eng.** 45%
 - Comp. Sci. & Eng. 36%
 - Mech. Eng. 9%
- Students developing state-ofthe-art technologies enabling autonomous driving through hands-on engineering experience

- Autonomous Golf Cart
 - Golf cart has been acquired
 - Safer integration in pedestrian dense areas
 - Developed radar detection system
- International student competitions
 - NHTSA Enhanced Safety Vehicle (ESV) Competition
 - SAE/GM AutoDrive Challenge Competition

Hailable Self-Driving Vehicle

- Park once on periphery or south campus
 - Parking cost reduced
- High frequency bus lines to major centers
- Lightweight self-driving electric vehicles
 - Mobile app hailing

Heterogeneous V2X Network Design for MSU Campus

Objective: Heterogeneous network design with Roadside Units (RSUs) using

- ✓ Dedicated Short Range Communication (DSRC) Radio
- ✓ Cellular Links
- ✓ Television Broadcast Link using ATSC

What will it Enable: Campus mobility support use cases

- ✓ Networking traffic management sensors, camera, traffic light etc.
- √ Vehicle and pedestrian traffic management applications
- ✓ Construction and other event map dissemination
- ✓ Coordinated traffic signal optimization
- ✓ Supporting Autonomous vehicle control needs
- ✓ Data collection and funded research needs (Engineering, Com Arts ..)

Deliverables:

- ✓ Campus-specific design specification with phased deployment plan
- ✓ Planning/simulation tool for network design
- ✓ Deployment and test support from Engineering

App for Pedestrian Traffic Control and Data Collection

Objective: Design and develop a phone App for pedestrian traffic:

- ✓ Monitoring and
- ✓ Control

What will it enable:

- ✓ Collect pedestrian traffic data through the App
- ✓ Route pedestrian traffic through notification
- ✓ Avoid pedestrian hot-spots, thus improving vehicle traffic flow
- ✓ Incentive-based compliance for student participation
- ✓ Data gathering for funded research in Engineering, Transportation, CommArts, and other colleges

Deliverables:

- ✓ A fully functional App
- ✓ Backend server with algorithms for congestion clearance etc.
- ✓ Deployment engineering support

Parking App

Assessment of available technologies

- Cost and benefits of each technology
- Installation requirements
- Accuracy
- Barriers in implementing the technology

Cost analysis tool*

Parking App*

Counting methods

Lot

- Gate Counting
- Induction Loop Vehicle Detectors
- RFID Tags
- Laser Line
- Other (Infrared Cameras, Microwave Radar, and Infrared Strobe)

Spot

- Ultrasonic Detectors
- Camera and Image Processing
- Magnetometer and IR sensors
- Other (Piezoelectric Cables)

Information Dissemination

- Variable Message Signs
- Smartphones
- LED Lamps

Recommendations

Low traffic volume road: Gate counting

Low traffic volume road: Induction Loop Detectors or RFID

Indoor lots: Ultrasonic Detectors

Outdoor lots: Magnetometer and IR sensors

Multi-modal Traffic Simulation

<u>Objective</u>: Simulate traffic dynamics and assess implementation of different strategies to optimize campus mobility

- ✓ Consider impacts of connected vehicles in conjunction with the heterogeneous V2X network design
- ✓ Consider transit, walk, bike, autonomous, and conventional vehicles

What will it Enable: Campus mobility support use cases

✓ Networking traffic management

✓ Assessing the network performance for special events in the campus including construction and game days
✓ Traffic control optimization (signalized

✓ Traffic control optimization (signalized intersection, limited access areas, transit priority,

✓ Parking lot usage monitoring and real time pricing

Deliverables:

- ✓ Multi-modal traffic simulation model
- ✓ Proposing certain strategies to improve mobility campus-wide

Policy and Social Dimensions of Technology

- University test bed/ proof of concept for policymakers, results could be communicated via the Institute for Public Policy and Social Research
- Buy-in from stakeholders e.g., administration, students, police, raising awareness
- Privacy considerations
- Inclusion of environmental considerations (e.g., interface between electrification and autonomy)
- Incorporate policy and social dimensions into models
- Interface usability and accessibility

Questions? Comments?

Contact johnv@egr.msu.edu

Backup Slides

CONNECTED &

Seamlessly integrating mobility, safety, and security in autonomous and connected vehicles.

MSU KEY AREAS

Multi-modality sensing

Radars and antenna design

X2X networking

Sensor and data fusion

Deep learning

Biometrics and cybersecurity

Other aspects of the Mobility Studio are research programs focused on **Smart Infrastructure** and **Traffic & Mobility Management**.

SMART INFRASTRUCTURE

Communicating pavement, environmental, and vehicle-pedestrian traffic conditions in real time.

MSU KEY AREAS

- Sensors Urban cameras
 - Pedestrian integration

TRAFFIC/MOBILITY MANAGEMENT

Vehicle and pedestrian modeling and management for safety, efficiency, and predictive control.

System-level modeling, safety, optimization, and control

Canvas Research Goals

external sensing

internal sensing

Canvas research focus

sensor & data fusion

Intra- & inter-modality fusion of sensed signals

Canvas research focus

(joint) deep learning

Object detection, recognition & motion forecast using deep learning

